Nuclear and Hadron Physics in the Netherlands

Myroslav Kavatsyuk

Nuclear and hadron physics group,
KVI – Center for Advanced Radiation Technology,
University of Groningen
In summary...

We are investigating subatomic matter at extremes.
Nuclear matter at extremes

Aim is to understand properties of nuclear matter at extreme isospin

Selected topics:
- Investigation of Nuclear Matter Distributions along Isotopic Chains
- Giant Monopole Resonance

Relevance for astrophysics:
- Systematic studies of isotopic chains → rp- and r-processes
- Nuclear compressibility → EOS of neutron stars
Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei

B. D. Metzger,1*† G. Martínez-Pinedo,2 S. Darbha,3 E. Quataert,3 A. Arcones,2,4 D. Kasen,5† R. Thomas,6 P. Nugent,6 I. V. Panov7,8,9 and N. T. Zinner10
GW170817 observation of r-process?

August 17, 2017

- LIGO and Virgo observed a textbook signal of gravitational waves from a neutron star merger.
- 1.7 s later NASA’s Fermi gamma ray space telescope saw photons from the \(\gamma \)-ray burst.
- NASA’s swift telescope observed first a blue and ultraviolet object, which turned red to infrared in the following nights.
Our group is leading the development of new experimental techniques:

- Low momentum-transfer scattering of radioactive beams (EXL)

N. Kalantar-Nayestanaki
ex. EXL spokesperson
ex. NUSTAR spokesperson

C. Rigollet

M.N. Harakeh
Proof of the concept

First EXL experiment with the existing storage ring at GSI (ESR)
(EXL=EXotic nuclei studied with Light-ion induced reactions at storage rings)

First-ever scattering experiment with radioactive ions in a storage ring!
Proof of the concept

First EXL experiment with the existing storage ring at GSI (ESR)
(EXL=EXotic nuclei studied with Light-ion induced reactions at storage rings)

Elastic p-scattering off Ni isotopes

M. von Schmid et al., Submitted to Nature
Nuclear matter at extremes

Our group is leading the development of new experimental techniques:

- Chemical isobar-purification for radioactive beams (CISE)

J. Even
CISE Chemical Ion SEparation

Challenge: separation from isobars!

Octupole	Buncher	Transfer	Penning Traps	Detector
Ions from SHIP	CH₄Cd⁺	CH₄Ag⁺		
Gas catcher	Sn⁺ In⁺ Cd⁺	Sn⁺ In⁺ Cd⁺		
				Measurement trap

CISE has been designed, under construction
In summary...

We are investigating subatomic matter at extremes.
Exotic hadron matter

Colour-neutral states allowed by QCD

- Pions, charmonium, etc
 - Mesons
- Protons, neutrons, etc
 - Baryons

- Z_c and Z_b
 - Seen at BESIII and LHC-B

- Pentaquark
 - Seen at LHC-B

- $f_0(1500)$?
- $f_0(1500)$?
- XY states?

- Hybrid
- Glueball

Conventional matter

Exotic matter
Our key experiments

PANDA@FAIR
(FAIR, Darmstadt, Germany)
- High discovery potential for exotic states
- High-precision width measurement: \(\sim 100 \text{ keV} \)
- Cooled \(\bar{p} \) on fixed target
- Direct production of states with all possible quantum numbers

BESIII@BEPCII
(IHEP, Beijing, China)
- Systematic and precision studies of charmonia (state mass, transition rates); search for light hybrids, glueballs
- \(e^+ e^- \) collider
- Direct production of \(1^- \) states
Conventional matter

\[S = S_1 + S_2 \]
\[J = L + S \]
\[P = (-1)^{L+1} \]
\[C = (-1)^{L+S} \]

Open charm threshold

established c\bar{c} states

[Diagram showing mass and JPC values]
Exotic matter at BESIII

Z_c states discovered by BESIII

<table>
<thead>
<tr>
<th>MASS [GeV/c^2]</th>
<th>J/ψ(1^+S_1)</th>
<th>η_c(2^+S_1)</th>
<th>η_c(1^+P_1)</th>
<th>X_ψ(1^+P_1)</th>
<th>X_ψ(2^+P_0)</th>
<th>Z(3900)^+</th>
<th>Z(4050)^+</th>
<th>Z(4020)^+</th>
<th>Z(4200)^+</th>
<th>Z(4430)^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y(4360)</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

States can be directly populated in annihilation e^+e^-

Electrically-charged with hidden-charm:
- cannot be charmonium!
- Exotic (tetraquark?)

Y(4260)
π^±
Z_c^±(3900)
π^±
J/ψ
Other QCD exotic objects

Z_c states discovered by BESIII

Lattice QCD predicts exotic matter (hybrids, glueballs) which have spin-symmetries forbidden for mesons

Can be unambiguously identified (no mixing with conventional states)

States can be directly populated in annihilation e^+e^-
Other QCD exotic objects

Z_c states discovered by BESIII

Lattice QCD predicts exotic matter (hybrids, glueballs) which have spin-symmetries forbidden for mesons

Can be unambiguously identified (no mixing with conventional states)

In proton-antiproton annihilation all possible conventional and high-spin states are directly formed!
Line-shape measurement with PANDA

Momentum spread of the cooled antiproton beams: $< 4 \cdot 10^{-5}$

Line shape measurement with CM energy resolution down to 50 keV
Line-shape scan of X(3872)

Klaus Goetzen et al.

PANDA will be able to provide crucial information on exotic matter

MC Simulations of the X(3872) scan (assumed \(\Gamma=100\) keV)

\[
\bar{p}p \rightarrow X(3872) \rightarrow J/\psi\pi^+\pi^-
\]
A glance to the future...

Add strangeness, a new dimension in the nuclear chart, hyprenuclear physics:

- NUSTAR – hypernuclei at extreme isospins
- PANDA – multiple strangeness