The ETH Zurich Laboratory of Ion Beam Physics

Hans-Arno Synal
Mission Statement of the Laboratory

LIP is a national and international center for

- Accelerator Mass Spectrometry (AMS) 80%
- Ion Beam based Material Sciences (IBA) 20%

Mission of the Laboratory:

- Fundamental research of processes in ion beams physics within a trans-disciplinary context between methods and applications.
- Development of novel instrumentation base on latest research results.
- Exploit existing and new developed infrastructure to play a key role in applications of ion beam technology.
- Provide our Infrastructure to external users (Service Laboratory)
 - Perform analyses
 - Produce Instrumentation under research collaboration agreements
- The LIP is taking part within the educational program of ETH
 - Lectures at ETH and other Universities
 - Bachelor-, Master-, Diploma- and Doctoral Theses
Beautiful examples of radiocarbon dating applications

"Ozi" the Ice Man
3350 – 3110 BC

The Shroud of Turin
1260 – 1390 AD

"Temple" Scroll
97 BC – 1 AD

A Copy of "Mona Lisa"
1430 -1480 AD

Bamiyan Afghanistan
590 AD - 645 AD

The "Turin" Textile sample

NuPECC Meeting Basel 12th June 2015
LIP is a national and international center for

- Accelerator Mass Spectrometry (AMS) 80%
- Ion Beam based Material Sciences (IBA) 20%

Mission of the Laboratory:

- Fundamental research of processes in ion beams physics within a trans-disciplinary context between methods and applications.
- Development of novel instrumentation base on latest research results.
- Exploit existing and new developed infrastructure to play a key role in applications of ion beam technology.
- Provide our Infrastructure to external users (Service Laboratory)
 - Perform analyses
 - Produce Instrumentation under research collaboration agreements
- The LIP is taking part within the educational program of ETH
 - Lectures at ETH and other Universities
 - Bachelor-, Master-, Diploma- and Doctoral Theses
run time statistics
RBS
ERDA
HIBS
PIXE
Channeling
NRA
Ion Beam Modification
Capillary Microprobe
Cluster Irradiation
SuperSIMS
MeV SIMS under Development
Measurement hall
500 kV Pelletron based multi-nuclide AMS system

- Routine 10Be (all possible applications).
- Routine and experimental 26Al measurements.
- 41Ca for biomedical application.
- Routine 129I environmental monitoring and nuclear safeguards.
- Versatile actinide program (Th, U, Pu, Pa, Cu, Am,..).

Improved performance

- additional magnet at HE-end
- higher transmission with He stripping
- Optimized gas ionization detectors

The “mother” of all compact AMS facilities
200 kV vacuum insulated 14C dedicated AMS system

- “working horse” routine 14C program
- Unattended operation with low maintenance
- High throughput: 4650 graphite, 3000 CO$_2$ samples (<50 µg) in 2014
- Overall measurement uncertainty: 1.5-2 ‰ (modern sample)
- Hybrid ion source for solid graphite and gaseous CO$_2$ samples

“MICADAS” the most compact AMS system in the World
Developments of measured samples 1982-2014

150'000 AMS analyses since 1982

- 10Be
- 26Al, 36Cl, 41Ca, 129I, Ac
- 14C
The World of AMS facilities in 2015

124 AMS facilities

- National Electrostatic Corporation
- High Voltage Engineering Europe
- ETH Zurich
- Large Tandem / exotic systems

NuPECC Meeting Basel 12th June 2015
Commercial AMS systems

High Voltage Engineering Europa B.V.
Amsterdamseweg 63, 3812 RR Amersfoort, P.O. Box 99, 3800 AB Amersfoort, The Netherlands
Phone: +31 33 4619741 Fax: +31 33 4615291 E-mail: info@highvoltage.com Web: www.highvoltage.com

System layouts

5.0 MV Tandem AMS with Bouncer

5-6 MV

3.0 MV Tandem AMS with Bouncer

3 MV

3.0 MV Tandem AMS with Recombinator

1 MV

National Electrostatics Corporation
Middleton, Wisconsin, USA

5-6 MV

3 MV

500 kV

250 kV SSAMS
^{14}C charge state yield & accelerator size

Traditional AMS
2.5 - 9 MV

Coulomb disintegration

Fraction of ions in charge state

<table>
<thead>
<tr>
<th>Charge State</th>
<th>Energy / keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 - 1000</td>
</tr>
<tr>
<td>1+</td>
<td>1000 - 10000</td>
</tr>
<tr>
<td>2+</td>
<td>1000 - 10000</td>
</tr>
<tr>
<td>3+</td>
<td>1000 - 10000</td>
</tr>
<tr>
<td>4+</td>
<td>1000 - 10000</td>
</tr>
</tbody>
</table>

Energy / keV

www.ams.ethz.ch
Traditional 3-6 MV AMS systems

- Leibniz AMS 3 MV facility, Kiel, GER
- HZDR 6 MV Tandetron AMS facility, Rossendorf, GER
- VERA AMS 3 MV facility, Vienna, Austria
Charge state yield of 14C ions in Ar gas

Compact AMS
0.2 - 1 MV

Multiple ion gas collisions

Traditional AMS
2.5 - 9 MV

Coulomb disintegration

Fraction of ions in charge state

Energy / keV

0% 20% 40% 60% 80%

0 1+ 2+ 3+ 4+
Stripping Process

Injected negative mass 14 ions

\[\begin{align*}
14\text{C}^- & = 1 \\
13\text{CH}^- & = 10^8 \\
12\text{CH}_2^- & = 10^9
\end{align*} \]

negative ions

Stripper

positive ions

q=1-, 0, 1+, 2+, 3+, ...

\[\begin{align*}
{}^{13}\text{CH}^q & \quad {}^{13}\text{C}^q \\
{}^{12}\text{CH}_2^q & \quad {}^{12}\text{C}^q \\
\text{H}^q & \quad {}^{14}\text{C}^q
\end{align*} \]

\[\sum \Phi_q \rho (q) q = 1, 0, 1+, 2+, 3+, .. \]

- Electron-loss
- Electron capture
- Break-up of molecules
- Energy straggling
- Angular straggling

Charge state distribution

\[\begin{align*}
{}^{14}\text{C}^- \\
{}^{13}\text{C}^- \\
{}^{12}\text{C}^- \\
{}^{13}\text{CH}^- \\
{}^{12}\text{CH}_2^- \\
\text{H}^- \\
\text{H}^+ \\
\text{H}^{++} \\
\text{H}^{+++} \\
\text{..}
\end{align*} \]
Compact AMS Systems (1 MV-500KV)

Tandy AMS facility, Zurich, CH

ETH Zürich
Inside view of a MICADAS acceleration system
He-stripping to enhance system performance: AixMICADAS

in collaboration with: Aix-Marseille University Collège de France

performance:
• 48 % transmission
• > 90% ion optical transmission
• stable operation conditions
Introducing permanent magnets in AMS instruments

collaboration with:

- Arnd Braurichter
- Franz Boedker
- Leif Baandrup

- Göran Possnert
- Mehran Salehpour

permanent materials have a strong temperature dependence of magnetic field strength

Why shall we get away from a well established concept?

1) Simplified installation
2) No cooling water required
3) Significant reduction in operating costs

energy consumption of magnets:
5 - 10 kW @ 3000 h/year
energy costs: ~0.3 $/kWh → 4500-9000 $/yr
GreenMICADAS developed at ETHZ

Wall plug 3x400 V/16 A

compact lab-sized instrument
 – automatic operation
 – simple operation
 – no open high voltages
 – low maintenance costs

First System installed in 2014 at University of Uppsala
Second System became operational this week (CEA-Saclay)
Two more are under construction (University of Bristol, ETH Zurich)
Discoverers of Accelerator Mass Spectrometry (1977)

AMS-Heros
A.E. Litherland
K.H. Purser
H.E. Gove

not in picture
E. Nelson
G. Raisbeck
R. Muller

The New York Times

NEW YORK, THURSDAY, JUNE 9, 1977

A New Method of Carbon-14 Dating Expected to Double Science's Range

Der Rochester, NY(USA) Teilchenbeschleuniger

erster 14C Nachweis
Can we go any further?
He areal density of $\approx 0.5\mu g / cm^2$ should be sufficient to get rid of molecules

\[\sigma / (10^{-16} \text{ cm}^2) \]

stripping energy / keV
Angular straggling

NuPECC Meeting Basel 12th June 2015

N2

He

Energy / keV

half angle beam acceptance / mrad

68%
80%
95%

68%
80%
95%

www.ams.ethz.ch
Charge state yield: 12C in He

Further details: Poster AAT39; Sascha Maxeiner
A pure mass spectrometer for 14C detection

Experimental platform (prototype instrument)

- Investigate physical processes
- Optimize operation conditions
- Find best suited ion optical conditions
- Test designs for a dedicated 14C mass spectrometer

myCADAS

Configuration:
- Magnet
- Stripper
- Magnet
- ESA

Transmission: 35-38% @ 45 keV
Background and detection level

-7kV bias at vacuum chamber

2-D Scan: Analyzing magnet / ESA

- Clear identification of 14C ions
- 14C peak shows e/q – p/q correlation
- $\approx 35\%$ transmission
- $\approx 70\%$ 14C detection efficiency
Moor’s Law in AMS

- well established technology
- further developments for routine operation of specific applications

- FN-Tandem McMaster
- MP-Tandem Rochester
- EN-Tandem ETH, Oxford, Lower Hutt, Utrecht, Erlangen, ...
- IONEX Arizona, Oxford, Gif-sur-Yvette, ...
- HVEE-Tandetron Woods Hole, Groningen, Kiel, ...
- ETH-Compact: Zurich
 - NEC: Georgia, Poznan, Irvine
- NEC-SSAMS Lund, ANU, SUERC, ...
- ETH-MICADAS Zurich, Davis, Mannheim, ...
- ETH-μICADAS Zurich

\[\text{14C ion energy / MeV} \]

\[\text{Year / AD} \]
Scientific instruments for AMS and IBA

Ionplus AG produces high-quality and user-friendly instrumentation for accelerator mass spectrometry (AMS) and ion beam analysis (IBA).