THEORETICAL NUCLEAR and PARTICLE PHYSICS

Theory Groups at work:

- Andrzej Buras
- Michael Ratz
- Peter Ring
- Norbert Kaiser
- Wolfram Weise

... plus two additional permanent positions

- Fundamental Interactions
- New Physics beyond the Standard Model
- QCD: Phases and Structures
- Nuclear Many-Body Systems
Theory Group T31

- Fundamental Interactions
 ... from “Femto” to “Atto” Physics

- Signals of New Physics
 beyond the Standard Model

- Weak Decays of K and B Mesons:
 - CP Violation
 - QCD Corrections

- Supersymmetry
- Extra Dimensions

\[\text{Supersymmetric "shadow" particles} \]

\[\begin{align*}
 \frac{\Delta M_s}{\Delta M_d} & = \text{Gates-Nelson Bound} \\
 \sin 2\beta & = 0.83 \\
 \rho & = 0.79 \\
 \eta & = 0.74 \\
 \psi_{KS} & = 0.69
\end{align*} \]

\[\begin{align*}
 \epsilon_K & = 0.83 \\
 R_b & = 0.79
\end{align*} \]
Theoretical Nuclear Physics

broad range of Nuclear Structure investigations from ...

- Rare Isotopes
- New Heavy Elements
- New Collective Excitations ...

Covariant Density Functional Theory

Experimental indications of the soft dipole mode
... to:

- Halo Nuclei
- Nuclear Astro Physics

r-process
Hadrons
Nuclei
Matter under Extreme Conditions

... exploring the PHASES and STRUCTURES of QCD
Low-Energy QCD

- Spontaneous Symmetry Breaking and Effective Field Theory
- Chiral Perturbation Theory and Lattice QCD
- Mass and Spin Structure of the Nucleon

\[u + u + d = \text{proton} \]

\[m_u \approx 3 \text{ MeV} \quad m_d \approx 6 \text{ MeV} \]

mass: \(3 + 3 + 6 \neq 938 \)!

M. Procura et al.

\[
\begin{align*}
\text{nucleon mass} & \quad [\text{GeV}] \\
\text{chiral theory} & \\
\text{lattice QCD} & \\
\text{physical point} & \\
\end{align*}
\]

\[
\begin{align*}
\text{quark mass} & \quad [\text{MeV}] \\
0 & \quad 25 \quad 50 \quad 75 \quad 100 \quad 150 \\
0.8 & \quad 1.0 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \\
\end{align*}
\]
QCD Thermodynamics and Hadrons in Dense and Hot Matter

energy density, entropy density, pressure

phase diagram

... from QCD
via
CHIRAL EFFECTIVE FIELD THEORY ...

... to the NUCLEAR CHART?

Nuclear Density Functional constrained by Low-Energy QCD

- Strategy:
 - Calculate physics at [long and intermediate] distances using nuclear [chiral effective field theory]
 - Fix [short] distance constants (contact interactions) e.g. in Pb region
 - Predict [systematics] for all other nuclei

Strategies

- Fix short distance constants (contact interactions) e.g. in Pb region
- Predict systematics for all other nuclei

Graphs

- **\(\delta \frac{E}{A} \) (%):**
 - Various elements from 16O to 210Po
 - Data points showing deviations between calculated and measured binding energies per nucleon

- **\(\delta \langle r^2 \rangle^{1/2} \) (%):**
 - Various elements from 16O to 210Po
 - Data points showing deviations between calculated and measured charge radii

References

Technische Universität München
Nuclear Density Functional constrained by Low-Energy QCD

deviations (in %) between calculated and measured binding energies

Ground state deformations

Systematics through isotopic chains governed by isospin dependent forces from chiral pion dynamics

Technische Universität München
• Hydrodynamics Simulations of Core Collapse Supernovae

Th. Janka et al. (2006)
THEORETICAL NUCLEAR and PARTICLE PHYSICS

Theory Groups at work:

Andrzej Buras
Michael Ratz
Wolfram Weise
Peter Ring
Norbert Kaiser

Permanent Faculty (Professors): 5
Postdocs: 10
PhD & Dipl. Students: 22
Visiting Scientists: ~10

“UNIVERSE” Cluster

MLL